DE2.3 Electronics 2 for Design Engineers

Tutorial Sheet 2 – Fourier Transform, Sampling & DFT

(Lectures 3, 4 & 5)

* indicates level of difficulty

1.* Derive from the Fourier transform of the signals f(t) shown in Fig. Q1 (a) and (b).

Figure Q1

2.** Derive the inverse Fourier transform of the spectra shown in Fig. Q2 (a) and (b).

3.** Sketch the following functions:

a)
$$rect(\frac{t}{2})$$
 b) $rect(\frac{t-10}{8})$
c) $sinc(\frac{\pi\omega}{5})$ d) $sinc(\frac{\omega-10\pi}{5})$.

4.** Fig. Q4 (a) and (b) shows Fourier spectra of signals $f_1(t)$ and $f_2(t)$. Determine the Nyquist sampling rates in each case.

5.*** For a signal f(t) that is time-limited to 10 ms and has an essential bandwidth of 10 kHz, determine N₀, the number of signal samples necessary to compute its DFT with a frequency resolution f₀ of 50 Hz.